BAYESIAN STATISTICAL CONCEPTS

A gentle introduction

Alex Etz
@alxetz ←Twitter (no 'e' in alex)
alexanderetz.com ←Blog
November 5th 2015

Why do we do statistics?

- Deal with uncertainty
 - Will it rain today? How much?
 - When will my train arrive?
- Describe phenomena
 - It rained 4cm today
 - My arrived between at 1605

Make predictions

- It will rain between 3-8 cm today
- My train will arrive between 1600 and 1615

Prediction is key

- Description is boring
 - Description:
 - On this IQ test, these women averaged 3 points higher than these men
- Prediction is interesting
 - Prediction:
 - On this IQ test, the average woman will score above the average man
- Quantitative (precise) prediction is gold
 - Quantitative prediction:
 - On this IQ test, women will score between 1-3 pts higher than men

Evidence is prediction

- Not just prediction in isolation
- Competing prediction
 - Statistical evidence is comparative

10 blue 5 orange, 5 blue

- I propose a game
 - Draw a candy from one of the bags
 - You guess which one it came from
 - After each draw (up to 6) you can bet (if you want)

- If orange
 - Bag A predicts orange with probability .5
 - Bag B predicts orange with probability 0
- Given orange, there is evidence for A over B
 - How much?
 - Infinity
 - Why?
 - Outcome is impossible for bag B, yet happened
 - Therefore, it cannot be bag B

- If blue
 - Bag A predicts blue with probability .5 (5 out of 10)
 - Bag B predicts blue with probability 1.0 (10 out of 10)
- Cannot rule out either bag
- Given blue, there is evidence for B over A
 - How much?
 - Ratio of their predictions
 - 1.0 divided by .5 = 2 *per draw*

Evidence is prediction

- There is evidence for A over B if:
 - Prob. of observations given by A exceeds that given by B
- Strength of the evidence for A over B:
 - The ratio of the probabilities (very simple!)
 - This is true for all of Bayesian statistics
 - More complicated math, but same basic idea
 - This is **not** true of classical statistics

- Same game, 1 extra step
 - I draw one card from a deck
 - Red suit (Heart, Diamond) I draw from bag A
 - Black suit (Spade, Club) I draw from bag B
 - Based on the card, draw a candy from one of the bags
 - You guess which one it came from
 - After each draw (up to 6) you can bet
 - (if you want)

• If orange, it came from bag A 100%. Game ends

- If blue
 - Both bags had 50% chance of being selected
 - Bag A predicts blue with probability .5 (5 out of 10)
 - Bag B predicts blue with probability 1.0 (10 out of 10)
- Evidence for B over A
 - How much?
 - Ratio of their predictions
 - 1.0 divided by .5 = 2 per blue draw

- Did I add any information by drawing a card?
 - Did it affect your bet at all?
- If the prior information doesn't affect your conclusion, it adds no information to the evidence
 - "Non-informative"

- Same game, 1 extra step
 - I draw one card from a deck
 - King of hearts I draw from bag B
 - Any other card I draw from bag A
 - I draw a ball from one of the bags
 - You guess which one it came from
 - After each draw (up to 6) you can bet

- Did I add any information by drawing a card?
 - Did it affect your bet at all?
- Observations (evidence) the same
 - But conclusions can differ
- Evidence is separate from conclusions

- The 1 euro bet
 - If orange draw
 - Bet on bag A, you win 100%
 - We have ruled out bag B
 - If blue draw
 - Bet on bag A, chance you win is x%
 - Bet on bag B, chance you win is (1-x)%

- Depends on:
 - Evidence from sample (candies drawn)
 - Other information (card drawn, etc.)
- A study only provides the evidence contained in the sample
- You must provide the outside information
 - Is the hypothesis initially implausible?
 - Is this surprising? Expected?

- If initially fair odds
 - (Draw red suit vs. black suit)
 - Same as adding no information
 - Conclusion based only on evidence
- For 1 blue draw
 - Initial (prior) odds 1 to 1
 - Evidence 2 to 1 in favor of bag B
 - Final (posterior) odds 2 to 1 in favor of bag B
 - Probability of bag B = 67%

- If initially fair odds
 - (Draw red suit vs. black suit)
 - Same as adding no information
 - Conclusion based only on evidence
- For 6 blue draws
 - Initial (prior) odds 1 to 1
 - Evidence 64 to 1 in favor of bag B
 - Final (posterior) odds 64 to 1 in favor of bag B
 - Probability of bag B = 98%

- If initially unfair odds
 - (Draw King of Hearts vs. any other card)
 - Adding relevant outside information
 - Conclusion based on evidence combined with outside information
- For 1 blue draw
 - Initial (prior) odds 1 to 51 in favor of bag A
 - Evidence 2 to 1 in favor of bag B
 - Final (posterior) odds 1 to 26 in favor of bag A
 - Probability of bag B = 4%

- If initially unfair odds
 - (Draw King of Hearts vs. any other card)
 - Adding relevant outside information
 - Conclusion based on evidence combined with outside information
- For 6 blue draws
 - Initial (prior) odds 1 to 51 in favor of bag A
 - Evidence 64 to 1 in favor of bag B
 - Final (posterior) odds 1.3 to 1 in favor of bag B
 - Probability of bag B = 55%

- The evidence was the same
 - 2 to 1 in favor of B (1 blue draw)
 - 64 to 1 in favor of B (6 blue draws)
- Outside information changed conclusion
 - Fair initial odds
 - Initial prob. of bag B = 50%
 - Final prob. of bag B = 67% (98%)
 - Unfair initial odds
 - Initial prob. of bag B = 2%
 - Final prob. of bag B = 4% (55%)

Should you take the bet?

- If I offer you a 1 euro bet:
 - Bet on the bag that has the highest probability
- For other bets, decide based on final odds

Evidence is comparative

What if I had many more candy bag options?

Graphing the evidence

- What if I wanted to compare every possible option at once?
- Graph it!

Graphing the evidence (1 blue)

Graphing the evidence (1 blue)

Graphing the evidence (6 blue)

Graphing the evidence (6 blue)

Graphing the evidence

- This is called a Likelihood function
- Ranks probability of the observations for all possible candy bag proportions
- Evidence is the ratio of heights on the curve
 - A above B, evidence for A over B

Graphing the evidence

- Where does prior information enter?
 - Prior rankings for each possibility
- Just as it did before
 - But now as a prior distribution

Prior information

- "Non-informative" prior information
 - All possibilities ranked equally
 - i.e. no value preferred over another
- Weak prior information; vague knowledge
 - "The bag has some blue candy, but not all blue candy"
 - After Halloween, for example
 - Saw some blue candy given out, but also other candies
- Strong prior information
 - "Proportion of women in the population is between 40% and 60%"

Non-informative

Weakly-informative

Strongly-informative

Information and context

- Your prior information depends on context!
 - And depends on what you know!
- Just like drawing cards in the game
 - Just harder to specify
 - Intuitive, personal
- Conclusions must take context into account