Where have I been? (looking back on the last year)

With the new school year upon us, I figured this was a good time to reflect on all that happened with me over the past year or so. It was an exciting year, that included a lot of new collaborations and traveling all over the place. Let me bring you up to speed on what’s been going on.

Side note: If you know me primarily from reading this blog you might (justifiably) think I’ve disappeared. Only two posts since last summer? Geez, I really suck. I’m still here, but I just don’t have as much time as before to focus on the kind of in-depth technical blogging I used to do. On the bright side I have kept writing that kind of material, but in the form of papers! Maybe I can do some light less-technical blogging this year, we’ll see.

Here’s a list of some developments in my career and life over the last year (here’s an updated CV):

1. My collaborators and I published these papers

  • Introduction to the concept of likelihood and its applications [preprint] (which takes from some of my blog posts [1, 2])
  • How to become a Bayesian in eight easy steps: An annotated reading list [$$$, OA] (with Quentin Gronau, Fabian Dablander, Peter Edelsbrunner, and Beth Baribault)
  • Introduction to Bayesian inference for psychology [$$$, OA] (with Joachim Vandekerckhove)
  • J. B. S. Haldane’s contribution to the Bayes factor hypothesis test [OA] (with E.-J. Wagenmakers)
  • Making replication mainstream [preprint] (with Rolf Zwaan, Rich Lucas, and Brent Donnellan, born out of discussions from SIPS 2016)
  • Too true to be bad: When Sets of Studies with Significant and Non-Significant Findings Are Probably True [OA] (with Daniel Lakens)
  • Bayesian Inference for Psychology. Part II: Example Applications with JASP [OA] (with the JASP team)

2. And we’ve submitted some more

  • Bayesian Reanalyses from Summary Statistics: A Guide for Academic Consumers [preprint] (with Alexander Ly, Akash Raj, Maarten Marsman, Quentin Gronau, and E.-J. Wagenmakers)
  • Reported self-control does not meaningfully assess the ability to override impulses [preprint] (with Bair Saunders, Marina Milyavskaya, Daniel Randles, and Mickey Inzlicht)
  • Replication Bayes factors from Evidence Updating [preprint] (with Alexander Ly, Maarten Marsman, and E.-J. Wagenmakers)

3. J. P. de Ruiter and I started recording a podcast (with valuable help from Saul Albert and Laura de Ruiter and others)

  • We recorded a number of episodes but have hit some delays in producing the podcast, but it is coming soon! I will post about it when it is released.

4. I reviewed for four new journals

  • Advances in Methods and Practices in Psychological Science (a brand new psych journal!)
  • Journal of Experimental Psychology: General
  • Review of General Psychology
  • Social Psychological and Personality Science

5. I presented at 3 conferences

  • The Annual Meeting of the Society for Mathematical Psychology in Warwick, UK
  • The Annual Meeting of the Association for Psychological Science in Boston [poster]
  • The Annual Meeting of the Psychonomic Society in Boston

6. I taught 2 workshops on Bayesian statistics (and helped at a third)

  • A one-day workshop for the Psychology Statistics Club at University of Ottawa [materials]
  • A “deep dive” workshop for the Society for Personality and Social Psychology conference in San Antonio, TX
  • Teaching assistant for the Seventh Annual JAGS and WinBUGS Workshop in Amsterdam (I stuck around Amsterdam for ~2 months)

7. I attended the second annual meeting of The Society for the Improvement of Psychological Science (SIPS)

  • SIPS continues to be awesome
  • Our “Making replication mainstream” paper (just recently accepted!) was born out of discussions we had at the inaugural SIPS meeting

8. The JASP team and I made 3 new videos

9. I wrote a guest post for the new Bayesian Spectacles blog

10. I officiated a wedding

  • If you know me personally (in real life or on facebook) you might know that my sister got married earlier this year and I acted as the officiant for the ceremony. I’ve done a lot of academic public speaking, but this one was a special kind of nerve-wracking! (but also really fun and rewarding!)

 

(I don’t see these kinds of periodic recap posts from my blogging colleagues very often. I’m not sure why not. Maybe posts like this could feel like bragging about all the good stuff that’s happened to us, so it feels a little awkward. But even so, so what! Presumably someone reads and follows this blog because they want to know what I’m thinking and what I’m doing, and this kind of post is a good way to keep them updated.)

New revision of How to become a Bayesian in eight easy steps

Quentin, Fabian, Peter, Beth and I recently resubmitted our manuscript titled “How to become a Bayesian in eight easy steps: An annotated reading list” that we initially submitted earlier this year. You can find an updated preprint here. The reviewer comments were pleasantly positive (and they only requested relatively minor changes), so I don’t expect we’ll have another revision. In the revised manuscript we include a little more discussion of the conceptual aspect of Bayes factors (in the summary of source 4), some new discussion on different Bayesian philosophies of how analysis should be done (in the introduction of the “Applied” section) and a few additions to the “Further reading” appendix, among other minor typographical corrections.

This was quite a minor revision. The largest change to the paper by far is our new short discussion on different Bayesian philosophies, which mainly revolve around the (ever-controversial!) issue of hypothesis testing. There is an understandable desire from users of statistics for a unitary set of rules and regulation–a simple list of procedures to follow–where if you do all the right steps you won’t piss off that scrupulous methods guy down the hall from you. Well, as it happens, statistics isn’t like that and you’ll never get that list. Statistics is not just a means to an end, as many substantive researchers tend to think, but an active scientific field itself. Statistics, like any field of study, is a human endeavor that has all sorts of debates and philosophical divides.

Rather than letting these divides turn you off from learning Bayes, I hope they prepare you for the vast analytic viewpoints you will likely encounter as Bayesian analyses become more mainstream. And who knows, maybe you’ll even feel inspired to approach your own substantive problems with a new frame of mind.  Here is an excerpt from our discussion:

Before moving on to our final four highlighted sources, it will be useful if readers consider some differences in perspective among practitioners of Bayesian statistics. The application of Bayesian methods is very much an active field of study, and as such, the literature contains a multitude of deep, important, and diverse viewpoints on how data analysis should be done, similar to the philosophical divides between Neyman–Pearson and Fisher concerning proper application of classical statistics (see Lehmann, 1993). The divide between subjective Bayesians, who elect to use priors informed by theory, and objective Bayesians, who instead prefer “uninformative” or default priors, has already been mentioned throughout the Theoretical sources section above.

.

.
A second division of note exists between Bayesians who see a place for hypothesis testing in science, and those who see statistical inference primarily as a problem of estimation. ….

You’ll have to check out the paper to see how the rest of this discussion goes (see page 10).   🙂

A Bayesian perspective on the Reproducibility Project: Psychology

It is sometimes considered a paradox that the answer depends not only on the observations but on the question; it should be a platitude.

–Harold Jeffreys, 1939

Joachim Vandekerckhove (@VandekerckhoveJ) and I have just published a Bayesian reanalysis of the Reproducibility Project: Psychology in PLOS ONE (CLICK HERE). It is open access, so everyone can read it! Boo paywalls! Yay open access! The review process at PLOS ONE was very nice; we had two rounds of reviews that really helped us clarify our explanations of the method and results.

Oh and it got a new title: “A Bayesian perspective on the Reproducibility Project: Psychology.” A little less presumptuous than the old blog’s title. Thanks to the RPP authors sharing all of their data, we research parasites were able to find some interesting stuff. (And thanks Richard Morey (@richarddmorey) for making this great badge)

parasite

TLDR: One of the main takeaways from the paper is the following: We shouldn’t be too surprised when psychology experiments don’t replicate, given the evidence in the original studies is often unacceptably weak to begin with!

What did we do?

Here is the abstract from the paper:

We revisit the results of the recent Reproducibility Project: Psychology by the Open Science Collaboration. We compute Bayes factors—a quantity that can be used to express comparative evidence for an hypothesis but also for the null hypothesis—for a large subset (N = 72) of the original papers and their corresponding replication attempts. In our computation, we take into account the likely scenario that publication bias had distorted the originally published results. Overall, 75% of studies gave qualitatively similar results in terms of the amount of evidence provided. However, the evidence was often weak (i.e., Bayes factor < 10). The majority of the studies (64%) did not provide strong evidence for either the null or the alternative hypothesis in either the original or the replication, and no replication attempts provided strong evidence in favor of the null. In all cases where the original paper provided strong evidence but the replication did not (15%), the sample size in the replication was smaller than the original. Where the replication provided strong evidence but the original did not (10%), the replication sample size was larger. We conclude that the apparent failure of the Reproducibility Project to replicate many target effects can be adequately explained by overestimation of effect sizes (or overestimation of evidence against the null hypothesis) due to small sample sizes and publication bias in the psychological literature. We further conclude that traditional sample sizes are insufficient and that a more widespread adoption of Bayesian methods is desirable.

In the paper we try to answer four questions: 1) How much evidence is there in the original studies? 2) If we account for the possibility of publication bias, how much evidence is left in the original studies? 3) How much evidence is there in the replication studies? 4) How consistent is the evidence between (bias-corrected) original studies and replication studies?

We implement a very neat technique called Bayesian model averaging to account for publication bias in the original studies. The method is fairly technical, so I’ve put the topic in the Understanding Bayes queue (probably the next post in the series). The short version is that each Bayes factor consists of eight likelihood functions that get weighted based on the potential bias in the original result. There are details in the paper, and much more technical detail in this paper (Guan and Vandekerckhove, 2015). Since the replication studies would be published regardless of outcome, and were almost certainly free from publication bias, we can calculate regular (bias free) Bayes factors for them.

Results

There are only 8 studies where both the bias mitigated original Bayes factors and the replication Bayes factors are above 10 (highlighted with the blue hexagon). That is, both experiment attempts provide strong evidence. It may go without saying, but I’ll say it anyway: These are the ideal cases. 

(The prior distribution for all Bayes factors is a normal distribution with mean of zero and variance of one. All the code is online HERE if you’d like to see how different priors change the result; our sensitivity analysis didn’t reveal any major dependencies on the exact prior used.)

The majority of studies (46/72) have both bias mitigated original and replication Bayes factors in the 1/10< BF <10 range (highlighted with the red box). These are cases where both study attempts only yielded weak evidence.

Table3

Overall, both attempts for most studies provided only weak evidence. There is a silver/bronze/rusty-metal lining, in that when both study attempts obtain only weak Bayes factors, they are technically providing consistent amounts of evidence. But that’s still bad, because “consistency” just means that we are systematically gathering weak evidence!

Using our analysis, no studies provided strong evidence that favored the null  hypothesis in either the original or replication.

It is interesting to consider the cases where one study attempt found strong evidence but another did not. I’ve highlighted these cases in blue in the table below. What can explain this?

Table3

One might be tempted to manufacture reasons that explain this pattern of results, but before you do that take a look at the figure below. We made this figure to highlight one common aspect of all study attempts that find weak evidence in one attempt and strong evidence in another: Differences in sample size. In all cases where the replication found strong evidence and the original study did not, the replication attempt had the larger sample size. Likewise, whenever the original study found strong evidence and the replication did not, the original study had a larger sample size.

RPP

Figure 2. Evidence resulting from replicated studies plotted against evidence resulting from the original publications. For the original publications, evidence for the alternative hypothesis was calculated taking into account the possibility of publication bias. Small crosses indicate cases where neither the replication nor the original gave strong evidence. Circles indicate cases where one or the other gave strong evidence, with the size of each circle proportional to the ratio of the replication sample size to the original sample size (a reference circle appears in the lower right). The area labeled ‘replication uninformative’ contains cases where the original provided strong evidence but the replication did not, and the area labeled ‘original uninformative’ contains cases where the reverse was true. Two studies that fell beyond the limits of the figure in the top right area (i.e., that yielded extremely large Bayes factors both times) and two that fell above the top left area (i.e., large Bayes factors in the replication only) are not shown. The effect that relative sample size has on Bayes factor pairs is shown by the systematic size difference of circles going from the bottom right to the top left. All values in this figure can be found in S1 Table.

Abridged conclusion (read the paper for more! More what? Nuance, of course. Bayesians are known for their nuance…)

Even when taken at face value, the original studies frequently provided only weak evidence when analyzed using Bayes factors (i.e., BF < 10), and as you’d expect this already small amount of evidence shrinks even more when you take into account the possibility of publication bias. This has a few nasty implications. As we say in the paper,

In the likely event that [the original] observed effect sizes were inflated … the sample size recommendations from prospective power analysis will have been underestimates, and thus replication studies will tend to find mostly weak evidence as well.

According to our analysis, in which a whopping 57 out of 72 replications had 1/10 < BF < 10, this appears to have been the case.

We also should be wary of claims about hidden moderators. We put it like this in the paper,

The apparent discrepancy between the original set of results and the outcome of the Reproducibility Project can be adequately explained by the combination of deleterious publication practices and weak standards of evidence, without recourse to hypothetical hidden moderators.

Of course, we are not saying that hidden moderators could not have had an influence on the results of the RPP. The statement is merely that we can explain the results reasonably well without necessarily bringing hidden moderators into the discussion. As Laplace would say: We have no need of that hypothesis.

So to sum up,

From a Bayesian reanalysis of the Reproducibility Project: Psychology, we conclude that one reason many published effects fail to replicate appears to be that the evidence for their existence was unacceptably weak in the first place.

With regard to interpretation of results — I will include the same disclaimer here that we provide in the paper:

It is important to keep in mind, however, that the Bayes factor as a measure of evidence must always be interpreted in the light of the substantive issue at hand: For extraordinary claims, we may reasonably require more evidence, while for certain situations—when data collection is very hard or the stakes are low—we may satisfy ourselves with smaller amounts of evidence. For our purposes, we will only consider Bayes factors of 10 or more as evidential—a value that would take an uninvested reader from equipoise to a 91% confidence level. Note that the Bayes factor represents the evidence from the sample; other readers can take these Bayes factors and combine them with their own personal prior odds to come to their own conclusions.

All of the results are tabulated in the supplementary materials (HERE) and the code is on github (CODE HERE).


 

More disclaimers, code, and differences from the old reanalysis

Disclaimer:

All of the results are tabulated in a table in the supplementary information (link), and MATLAB code to reproduce the results and figures is provided online (CODE HERE). When interpreting these results, we use a Bayes factor threshold of 10 to represent strong evidence. If you would like to see how the results change when using a different threshold, all you have to do is change the code in line 118 of the ‘bbc_main.m’ file to whatever thresholds you prefer.

#######

Important note: The function to calculate the mitigated Bayes factors is a prototype and is not robust to misuse. You should not use it unless you know what you are doing!

#######

A few differences between this paper and an old reanalysis:

A few months back I posted a Bayesian reanalysis of the Reproducibility Project: Psychology, in which I calculated replication Bayes factors for the RPP studies. This analysis took the posterior distribution from the original studies as the prior distribution in the replication studies to calculate the Bayes factor. So in that calculation, the hypotheses being compared are: H_0 “There is no effect” vs. H_A “The effect is close to that found by the original study.” It also did not take into account publication bias.

This is important: The published reanalysis is very different from the one in the first blog post.

Since the posterior distributions from the original studies were usually centered on quite large effects, the replication Bayes factors could fall in a wide range of values. If a replication found a moderately large effect, comparable to the original, then the Bayes factor would very largely favor H_A. If the replication found a small-to-zero effect (or an effect in the opposite direction), the Bayes factor would very largely favor H_0. If the replication found an effect in the middle of the two hypotheses, then the Bayes factor would be closer to 1, meaning the data fit both hypotheses equally bad. This last case happened when the replications found effects in the same direction as the original studies but of smaller magnitude.

These three types of outcomes happened with roughly equal frequency; there were lots of strong replications (big BF favoring H_A), lots of strong failures to replicate (BF favoring H_0), and lots of ambiguous results (BF around 1).

The results in this new reanalysis are not as extreme because the prior distribution for H_A is centered on zero, which means it makes more similar predictions to H_0 than the old priors. Whereas roughly 20% of the studies in the first reanalysis were strongly in favor of H_0 (BF>10), that did not happen a single time in the new reanalysis. This new analysis also includes the possibility of a biased publication processes, which can have a large effect on the results.

We use a different prior so we get different results. Hence the Jeffreys quote at the top of the page.

 

 

Understanding Bayes: How to become a Bayesian in eight easy steps

How to become a Bayesian in eight easy steps: An annotated reading list

(TLDR: We wrote an annotated reading list to get you started in learning Bayesian statistics. Published version. Researchgate. PsyArxiv.)

It can be hard to know where to start when you want to learn about Bayesian statistics. I am frequently asked to share my favorite introductory resources to Bayesian statistics, and my go-to answer has been to share a dropbox folder with a bunch of PDFs that aren’t really sorted or cohesive. In some sense I was acting as little more than a glorified Google Scholar search bar.

It seems like there is some tension out there with regard to Bayes, in that many people want to know more about it, but when they pick up, say, Andrew Gelman and colleagues’ Bayesian Data Analysis they get totally overwhelmed. And then they just think, “Screw this esoteric B.S.” and give up because it doesn’t seem like it is worth their time or effort.

I think this happens a lot. Introductory Bayesian texts usually assume a level of training in mathematical statistics that most researchers simply don’t have time (or otherwise don’t need) to learn. There are actually a lot of accessible Bayesian resources out there that don’t require much math stat background at all, but it just so happens that they are not consolidated anywhere so people don’t necessarily know about them.

Enter the eight step program

Beth Baribault, Peter Edelsbrunner (@peter1328), Fabian Dablander (@fdabl), Quentin Gronau, and I have just finished a new paper that tries to remedy this situation, titled, “How to become a Bayesian in eight easy steps: An annotated reading list.” We were invited to submit this paper for a special issue on Bayesian statistics for Psychonomic Bulletin and Review. Each paper in the special issue addresses a specific question we often hear about Bayesian statistics, and ours was the following:

I am a reviewer/editor handling a manuscript that uses Bayesian methods; which articles should I read to get a quick idea of what that means?

So the paper‘s goal is not so much to teach readers how to actually perform Bayesian data analysis — there are other papers in the special issue for that — but to facilitate readers in their quest to understand basic Bayesian concepts. We think it will serve as a nice introductory reading list for any interested researcher.

The format of the paper is straightforward. We highlight eight papers that had a big impact on our own understanding of Bayesian statistics, as well as short descriptions of an additional 28 resources in the Further reading appendix. The first four papers are focused on theoretical introductions, and the second four have a slightly more applied focus.

We also give every resource a ranking from 1–9 on two dimensions: Focus (theoretical vs. applied) and Difficulty (easy vs. hard). We tried to provide a wide range of resources, from easy applications (#14: Wagenmakers, Lee, and Morey’s “Bayesian benefits for the pragmatic researcher”) to challenging theoretical discussions (#12: Edwards, Lindman and Savage’s “Bayesian statistical inference for psychological research”) and others in between.

The figure below (Figure A1, available on the last page of the paper) summarizes our rankings:

Readinglist.png

The emboldened numbers (1–8) are the papers that we’ve commented on in detail, numbers in light text (9–30) are papers we briefly describe in the appendix, and the italicized numbers (31–36) are our recommended introductory books (also listed in the appendix).

This is how we chose to frame the paper,

Overall, the guide is designed such that a researcher might be able to read all eight of the highlighted articles and some supplemental readings within a few days. After readers acquaint themselves with these sources, they should be well-equipped both to interpret existing research and to evaluate new research that relies on Bayesian methods.

The list

Here’s the list of papers we chose to cover in detail:

  1.  Lindley (1993): The analysis of experimental data: The appreciation of tea and wine. PDF.
  2. Kruschke (2015, chapter 2): Introduction: Credibility, models, and parameters. Available on the DBDA website.
  3. Dienes (2011): Bayesian versus orthodox statistics: Which side are you on? PDF.
  4. Rouder, Speckman, Sun, Morey, & Iverson (2009): Bayesian t tests for accepting and rejecting the null hypothesis. PDF.
  5. Vandekerckhove, Matzke, & Wagenmakers (2014): Model comparison and the principle of parsimony. PDF.
  6. van de Schoot, Kaplan, Denissen, Asendorpf, Neyer, & Aken (2014): A gentle introduction to Bayesian analysis: Applications to developmental research. PDF.
  7. Lee and Vanpaemel (from the same special issue): Determining priors for cognitive models. PDF.
  8. Lee (2008): Three case studies in the Bayesian analysis of cognitive models. PDF.

You’ll have to check out the paper to see our commentary and to find out what other articles we included in the Further reading appendix. We provide urls (web archived when possible; archive.org/web/) to PDFs of the eight main papers (except #2, that’s on the DBDA website), and wherever possible for the rest of the resources (some did not have free copies online; see the References).

I thought this was a fun paper to write, and if you think you might want to learn some Bayesian basics I hope you will consider reading it.

Oh, and I should mention that we wrote the whole paper collaboratively on Overleaf.com. It is a great site that makes it easy to get started using LaTeX, and I highly recommend trying it out.

This is the fifth post in the Understanding Bayes series. Until next time,

bill-murray-youre-awesome